If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+24t-240=0
a = 1; b = 24; c = -240;
Δ = b2-4ac
Δ = 242-4·1·(-240)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-16\sqrt{6}}{2*1}=\frac{-24-16\sqrt{6}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+16\sqrt{6}}{2*1}=\frac{-24+16\sqrt{6}}{2} $
| x^2−2x−4=0 | | 4+3b=b-2 | | 3x(5)/(6)+3=99 | | w-14=17 | | 3n5/6+3=99 | | 14x+5=12x | | 5x2-10x+25=0 | | 95=g+66 | | x9=11 | | 12u=24+6u | | -5+m=101 | | 8^5x=100 | | 7u/6-3=5u/4 | | 8(1+5×)+5=13+5x | | 11x-39=x-7+8x | | 4a5+a3-2a-1=0 | | 10^x+7=100 | | 4(y-8)/3=-4y | | 2x−3(1−x)+7=−5x | | n+23n=4 | | 3q=5+4q | | z+1/9=2z+4/9 | | 20=-a | | 5(x+3)/3=2x-4 | | 72+6x=180 | | t+6+t+20=180 | | -2=-a+6 | | -x-4=-5x | | 5(x+4)/4=4x-2 | | 5x+4(3x+7)=17x+28 | | x^2+108=3x(x+2) | | 2x+56=4x+12 |